Nitric oxide depresses connexin 43 after myocardial infarction in mice.
نویسندگان
چکیده
AIMS Heart failure (HF) is a major cause of death and morbidity. Connexin 43 (Cx43) content is reduced in the failing myocardium, but regulating factors have not been identified. In HF, inducible nitric oxide synthase (iNOS)-induced high levels of nitric oxide (NO) cause apoptosis and cardiac dysfunction. However, a direct iNOS-Cx43 link has not been demonstrated. We investigated this relationship in mice after myocardial infarction. METHODS Effects of myocardial infarction were evaluated 2 weeks after coronary artery ligation in wild-type C57BL/6 (WT) and iNOS(-/-) knockout mice. Myocardial Cx43 and Cx45 content were assessed by immunofluorescence confocal imaging and western blotting. Cardiac function was evaluated in anaesthetized mice using a micro pressure-tipped catheter inserted into the left ventricle. RESULTS Despite similar infarct size, deficiency in iNOS resulted in significantly lower plasma nitrate/nitrite levels, better haemodynamic performance and lower mortality 2 weeks after coronary ligation. Myocardial Cx43, but not Cx45, content was lower in WT mice following ligation. The reduction in Cx43 was less in iNOS(-/-) compared with WT mice. To assess the direct effect of NO on Cx43 expression, cultured neonatal mouse cardiomyocytes were employed. Incubation with the NO donor, S-nitroso-N-acetylpenicillamine, elicited a dose-dependent decrease in Cx43 content in cultured neonatal cardiomyocytes. CONCLUSIONS Increased NO production from iNOS depressed cardiac performance and contributed to the decreased myocardial Cx43 content 2 weeks after myocardial infarction.
منابع مشابه
Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not...
متن کاملMatrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction.
BACKGROUND Matrix metalloproteinases (MMPs) contribute to left ventricular remodeling after myocardial infarction (MI). Specific causative roles of particular MMPs, however, remain unclear. MMP-7 is abundant in cardiomyocytes and macrophages, but MMP-7 function after MI has not been defined. METHODS AND RESULTS Wild-type (WT; n=55) and MMP-7-null (MMP-7-/-; n=32) mice underwent permanent coro...
متن کاملIncreased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice.
BACKGROUND Inducible nitric oxide synthase (iNOS) is expressed in the myocardium after myocardial infarction (MI) and in heart failure. Its pathophysiological role in these conditions, however, is not clear. We hypothesized that increased NO production from iNOS expression causes myocardial dysfunction and results in higher mortality after MI. METHODS AND RESULTS MI was induced by left corona...
متن کاملNitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling
Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by ma...
متن کاملStatin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase.
BACKGROUND Endothelial nitric oxide (eNO) bioavailability is severely reduced after myocardial infarction (MI) and in heart failure. Statins enhance eNO availability by both increasing eNO production and reducing NO inactivation. We therefore studied the effect of statin treatment on eNO availability after MI and tested its role for endothelial progenitor cell mobilization, myocardial neovascul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta physiologica
دوره 194 1 شماره
صفحات -
تاریخ انتشار 2008